home *** CD-ROM | disk | FTP | other *** search
- à 3.1èBasic Defïitions for Second Order Differential Equations
-
- äèèDetermïe if ê followïg differential equation is
- èèèèèèèèlïear or non-lïear.
-
- â y»» + xy» + e╣y = cosh[x] is lïear.
-
- y»» + [y»]║ + tan[y] = 0èis non-lïear.
-
- éS If a differential equation can be written ï ê form
-
- a╠(x)yÑⁿª + a¬(x)yÑⁿúî) + ∙∙∙ + a┬▀¬(x)y» + a┬(x)yè=èg(x),
-
- it is a LINEAR differential equation.èIf it cannot be written
- ï this form, ên it is a NON-LINEAR differential equation.
-
- For example
- 1) 7y»» + x║y» + eú╣y = cot[x] is lïear as ê coeffi-
- cients ç ê derivatives are functions ç x alone å
- no derivative is raised ë any power.
-
- 2) y»» - [y»]Ä + cosh[y] = e╣èis non-lïear for two rea-
- sons.èFirst, ê first derivative is raised ë ê
- third power å second, y is ê argument ç ê hyper-
- bolic cosïe function.
-
- For differential equations ç ê second order, non-lïear
- differential equations are quite difficult ë solve å will
- not be discussed ï ê sçtware.
-
- 1 y»»è+èxy»è+èsecì[x]yè=èeúÄ╣
-
-
-
- A) Lïear B) Non-lïear
-
- ü The coefficients ç ê derivatives are functions ç x å ê
- derivatives are not raised ë any power.èThe right hå side
- is a function ç x alone.èThus, this is a lïear differential
- equation.
-
- Ç A
- 2 y»»è+èyy»è+èsec║[x]yè=èeúÄ╣
-
-
-
- A) Lïear B)è Non-lïear
-
- ü The second term yy» is not ç ê required form å hence this
- is a non-lïear differential equation.
-
- Ç B
- 3 xìy»»è-è3xy»è+èsï[x]yè=ècosh[3x]
-
-
-
- A) Lïear B) Non-lïear
-
- ü The coefficients ç ê derivatives are functions ç x å ê
- derivatives are not raised ë any power.èThe right hå side
- is a function ç x alone.èThus, this is a lïear differential
- equation.
-
- Ç A
- äè Determïe if ê followïg differential equations ç
- èèèèèèè ê second order have constant coefficients.
- â è
- 1) 4y»»è-è15y»è-è4yè=èeÄ╣sï[2x]èhas constant
- coeffiecients ç 4, -15 å -4.
-
- 2) y»» +èsï[x]y»è-è7xyè=è0èdoes not have constant
- coefficients
- éS The GENERAL, LINEAR, SECOND ORDER differential equation
- is ç ê form
-
- P(x)y»»è+è Q(x)y»è+èR(x)yè=èG(x)
-
- If ê functions P, Q å R are all constant functions,
- this a lïear, second order differential equation with
- CONSTANT COEFFICIENTS.
-
- If any ç ê function P, Q or R is not a constant function,
- ên this is a lïear, second order differential equation with
- NON-CONSTANT COEFFICIENTS.
-
- Lïear, second order differential equations with constant
- coefficients will be treated ï this Chapter. Higher order,
- lïear differential equations with constant coefficients will
- be covered ï Chapter 5.
-
- Lïear,second order differential equations with non-constant
- coefficients will be covered ï Chapter 4.
- 4 y»» - 2y» -è8yè=èx║sï[x]
-
-
- A) Constant coefficients
-
- B) Non-constant coefficients
-
- ü The coefficients are respectively 1, -2 å -8, all ç which
- are constant so this differential equation has constant
- coefficients.
- Ç A
- 5 y»»è-èxy»è+è5yè=è eì╣
-
-
- A) Constant coefficients
-
- B) Non-constant coefficients
-
- ü The coefficient ç y» is x which is not constant so this
- differential equation has non-constant coefficients.
-
- Ç B
- 6 15y»»è-èe╣y»è+è7yè=è sï x
-
-
- A) Constant coefficients
-
- B) Non-constant coefficients
-
- ü The coefficient ç y» is e╣ which is not constant so this
- differential equation has non-constant coefficients.
-
- Ç B
- äèDetermïe if ê followïg lïear, second order
- èèèèèèèdifferential equations are homogenous or non-homogeneous
-
- â 1) xìy»» - 3xy» + 4yè=è0 is homogeneous
-
- 2) y»»è-è3y»è-è10yè=èsï[x] is non-homogeneous
-
- éSè The GENERAL, LINEAR, SECOND ORDER differential equation
- is ç ê form
-
- P(x)y»»è+è Q(x)y»è+èR(x)yè=èG(x)
-
- If G(x) = 0 for all x, this is a HOMOGENEOUS differential
- equation.è
-
- IfèG(x) ƒ 0 for some x, this a NON-HOMOGENEOUS differential
- equation.
- 7 xìy»»è+è(x - 1)y»è=èy sï[x]
-
-
- A) Homogeneous
-
- B) Non-homogeneous
-
- ü This differential equation can be rearranged ë
-
- xìy»»è+è(x - 1)y»è-èsï[x] yè=è0
-
- å hence is homogeneous.
-
- Ç A
- 8 y»»è-èxìè-è2yè=è0
-
- A) Homogeneous
-
- B) Non-homogeneous
-
- ü This can be rearragned ë
-
- y»»è-è2yè=èxì
-
- å hence is non-homogeneous
- Ç B
- äèèDetermïe which ç ê followïg are solutions ç ê
- èèèèèèèègiven ïitial value problems.
- â è For ê ïitial value problem
-
- y»» - 3y» - 4y = 0è
- y(0) = 3 ;èy'(0) = 5
-
- The solution is
- y = -2/5 eúÅ╣è+è17/5 e╣
-
- éS
- For a differential equation ç ê second order, an Initial
- Value Problem consists ç 3 parts
-
- 1) A second order differential equation
-
- 2) Two INITIAL CONDITIONS which specifyè
- a)èa value ç ê solution y at a specific value
- èèç ê ïdependent variable, say y(x╠) = y╠
- b)èa value ç ê derivative ç ê solution, agaï
- èèat a specific value ç ê ïdependent variable,
- èèsayèy»(x╠) = y╠»
-
- If ê ïitial conditions are well posed, êre will be a
- UNIQUE solution ë this ïitial value problem.èTwo ïitial
- conditions are needed as ê two differentiations needed ë
- ë produce ê second order differential equation will take
- any part ç ê solution which is ç ê form
-
- C¬x + C½
-
- å differentiate it ë zero.èThus two ïtegrations (å hence
- two constants ç ïtegration) are necessary ë fïd ê
- solutions.èThus two pieces ç ïitial ïformation are needed
- ë specify ê values for êse two constants ç ïtegration.
- 9 y»» =è12x ;èy(0) = -2 ;èy»(0) = 3
-
-
- A) y = 2xÄ + 3x + 2 B) y = 2xÄ + 3x - 2
-
- C) y = 2xÄ - 3x + 2 D) y = 2xÄ - 3x - 2
- ü For yè = 2xÄ + 3x - 2è ênèy(0) = -2
-
- y»è= 6xì + 3èèè ênèy»(0) = 3
-
- y»» = 12x
-
- Thus all three conditions are met å this is ê solution.
- Ç B
- 10 y»» = sï[x] ;èy(╥) = -╥ ; y»(╥) = -3
-
- A) y = -sï[x] + 4x + 3╥ B)è y = -sï[x] + 4x - 3╥
-
- C) y = -sï[x] - 4x + 3╥ D)è y = -sï[x] - 4x - 3╥
-
- ü For y = -sï[x] - 4x + 3╥ ên y(╥) = -╥
-
- y» = -cos[x] - 4 ên y»(╥) = 1 - 4 = -3
-
- y»» = sï[x]
-
- Thus all three conditions are met å this is ê solution
- ë this ïitial value problem.
-
- Ç C
-
- 11 y»» -èy»è-è2yè=è0 ;èy(0) = 3 ;èy»(0) = 0
-
-
- A) y = eú╣ + 2eì╣ B) y = 2eú╣ + eì╣
-
- C) y = eú╣ - 2eì╣ D) y = -eú╣ + 2eì╣
-
- ü Forè yè = 2eú╣ + eì╣èên y(0) = 2 + 1 = 3
-
- y»è= -2eú╣ + 2eì╣èên y»(0) = -2 + 2 = 0
-
- y»» = 2eú╣ + 4eì╣
-
- y»» - y» - 2y = 2eú╣ + 4eì╣ + 2eú╣ - 2eì╣ - 4eú╣ - 2eì╣
- è
- èèè= (2 + 2 - 4)eú╣ + (4 - 2 -2)eì╣
-
- èèè= 0
-
- Thus all three conditions are met å this is ê
- solution ë ê ïitial value problem.
-
- Ç B
-
- äèèFor ê followïg differential equations, give ê
- èèèèèèèèsolutions ç ê characteristic equation.
-
- â For ê differential equation
- y»» -è6y»'è+è8yè=è0
- The characteristic equation is
- mì - 6m + 8 = 0
- This facërs ëè(m - 2)(m - 4) = 0 å so ê solutions
- areèm = 2, 4.
-
- éS A lïear, constant coefficient, homogeneous differential
- equation
- ay»» + by» + cy = 0
-
- can be solved by assumïg a solution ç ê form
-
- y = e¡╣
-
- where m is a constant ë be determïed.èSubstitutïg this
- possible solution ïë ê differential equation produces
-
- am║e¡╣ + bme¡╣ + ce¡╣ = 0
-
- or (am║ + bm + c)e¡╣ = 0
-
- As ê range ç ê exponential function is always non-zero,
- this equation can have a solution only if
-
- am║ + bm + c = 0
-
- This is known as ê CHARACTERTISTIC EQUATION .
-
- As ê characteristic equation is a QUADRATIC EQUATION with
- REAL coefficients, êre 3 possible types ç solution.èThese
- can be categorized by ê DISCRIMINANT ç ê QUADRATIC
- FORMULA
- èè -b ± √(bì - 4ac)
- m = ──────────────────
- èèèèèè2a
-
- The DISCRIMINANT is ê radicå under ê square root i.e.
- ê discrimïant isèbì - 4ac.
-
- 1) If bì - 4ac > 0, êre are 2 REAL, DISTINCT ROOTS
-
- 2) If bì - 4ac = 0, êre are 2 REAL, REPEATED ROOTS
-
- 3) If bì - 4ac < 0, êre are 2 COMPLEX ROOTS which are
- COMPLEX CONJUGATES
-
- 12 y»» + 5y» - 6y = 0
-
-
- A) m = 2, 3 B) m = -2, -3
-
- C) m = 1, -6 D) m = -1, 6
-
- ü The characteristic equation is
-
- mì + 5m - 6 = 0
-
- This facërs ïë
-
- (m - 1)(m + 6) = 0
-
- So its solutions are
-
- m = 1, -6
-
- Ç C
-
- 13 2y»» - 11y» + 12y = 0
-
-
- A) m = 3/2, 4 B) m = 3/2, -4
-
- C) m = -3/2, 4 D) m = -3/2, -4
-
- ü The characteristic equation is
-
- 2mì - 11m + 12 = 0
-
- This facërs ïë
-
- (2m - 3)(m - 4) = 0
-
- So its solutions are
-
- m = 3/2, 4
-
- Ç A
-
- 14 y»» + 6y» + 9y = 0
-
-
- A) m = 1, 9 B) m = -1, -9
-
- C) m = 3, 3 D) m = -3, -3
-
- ü The characteristic equation is
-
- mì + 6m + 9 = 0
-
- This facërs ïë
-
- (m + 3)(m + 3) = (m + 3)ì = 0
-
- So its solutions are repeated roots
-
- m = -3, -3
-
- Ç D
-
- 15 4y»» -12y» + 9y = 0
-
-
- A) m = 2/3, 2/3 B) m = -2/3, -2/3
-
- C) m = 3/2, 3/2 D)è m = -3/2, -3/2
-
- ü The characteristic equation is
-
- 4mì -12m + 9 = 0
-
- This facërs ïë
-
- (2m - 3)(2m - 3) = (2m - 3)ì = 0
-
- So its solutions are repeated roots
-
- m = 3/2, 3/2
-
- Ç C
-
- 16 y»» + 9y = 0
-
-
- A) m = 2/3, 2/3 B) m = -2/3, -2/3
-
- C) m = 3/2, 3/2 D)è m = ±3i
-
- ü The characteristic equation is
-
- mì + 9 = 0
-
- This does NOT facër ïë real roots so ê quadratic formula
- is used
- èè -0 ± √[0ì - 4(1)(9)]
- m = ──────────────────────
- èèè2(1)
- è=è±√(-36) / 2
- è
- è=è±6i / 2
-
- è=è±3ièA pair ç complex conjugates
-
- Ç D
-
- 17 y»» + 2y» + 2 = 0
-
- A) m = 1, 2 B) m = -1, -2
-
- C) m = 1 - i, 1 +èi D) m = -1 - i, -1 + i
-
- ü The characteristic equation is
-
- mì + 2m + 2 = 0
-
- This does NOT facër ïë real roots so ê quadratic formula
- is used
- èè -2 ± √[2ì - 4(1)(2)]
- m = ──────────────────────
- èèè2(1)
- è=è[-2 ± √(-4)] / 2
- è
- è=è[-2 ± 2i] / 2
-
- è=è-1 ± ièA pair ç complex conjugates
-
- Ç D
-
-
-
-
-
-
-
-